Embryol

Embryol. S., Lakshmesware R., Singleton D., Perry G., Tartakoff A.M., Medof E. Derivation and characterization of GPI anchor-defective human K562 cell clones. J. Biol. Chem. 1992;267:5272C5278. [PubMed] [Google Scholar] 99. Doering T.L., Masterson W.J., Englund P.J., Hart G.W. Biosynthesis of the GPI membrane anchor of the trypanosome variant surface glycoprotein. J. Biol. Chem. 1989;264:11168C11173. [PubMed] [Google Scholar] 100. Urakaze M., Kamitani T., DeGespari R., Sugiyama E., Chang W-M., Warren XMD8-92 C.D., Yeh E.T.H. Identification of a missing link in XMD8-92 GPI anchor biosynthesis in mammalian cells. J. Biol. Chem. 1992;267:6459C6462. [PubMed] [Google Scholar] 101. Caras I.W. An internally positioned signal can direct attachment of a GPI membrane anchor. J. Cell Biol. XMD8-92 1991;113:77C85. [PMC free article] [PubMed] [Google Scholar] 102. Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic, I. Isolation and characterization of tunicamycin. J. Antibiot. 1971;24:215C223. [PubMed] [Google Scholar] 103. Ito T., Kodama Y., Kawamura K., Suzuki K., Takasuki A., Tamura G. The structure of tunicaminyl uracil, a degradation product of tunicamycin. Agric. Biol. Chem. 1977;41:2302C2305. [Google Scholar] 104. Mahoney W.C., Duskin D. Separation of tunicamycin homologues by reversed high performance liquid chromatography. J. Chromatogr. 1980;198:506C510. [PubMed] [Google Scholar] 105. Heifetz A., Keenan R.W., Elbein A.D. Mechanism of action of tunicamycin around the UDPCGlcNAc:dolichyl-P GlcNAc-1-P transferase. Biochemistry. 1979;18:2186C2192. [PubMed] [Google Scholar] 106. Ericson M.C., Gafford J., Elbein A.D. Tunicamycin inhibits GlcNAc lipid formation in plants. J. Biol. Chem. 1977;252:7431C7433. [PubMed] [Google Scholar] 107. Struck D.K., Lennarz W.J. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J. Biol. Chem. 1977;252:1007C1013. [PubMed] [Google Scholar] 108. Takatsuki A., Tamura G. Inhibition of glycoconjugate biosynthesis by tunicamycin. In: Tamura G., editor. Tunicamycin. Japan Scientific Society Press; Tokyo: 1982. pp. 35C67. [Google Scholar] 109. Bettinger G.E., Small F.E. Tunicamycin, an inhibitor of peptidoglycan synthesis, a new site of inhibition. Biochem. Biophys. Res. Commun. 1975;67:16C21. [PubMed] [Google Scholar] 110. Bracha R., Glaser L. An intermediate in teichoic acid biosynthesis. Biochem. Biophys. Res. Commun. 1976;72:1098C1103. [PubMed] [Google Scholar] 111. Kaushal G.P., Elbein A.D. Purification and properties of the UDPCGlcNAc:dolichyl-pyrophosphoryl-GlcNAc GlcNAc transferase from mung bean seedlings. Herb Physiol. 1986;81:1086C1091. [PMC free article] [PubMed] [Google Scholar] 112. Reitman N.L., Kornfeld S. UDPC219C221 (August 1981). 117. Lehrman M.A., Zhu X., Khounlo S. Amplification and molecular cloning of the hamster tunicamycin sensitive GlcNAc-1-P transferase gene: The hamster and yeast enzymes share a common peptide sequence. J. Biol. Chem. 1988;263:19796C19803. [PubMed] [Google Scholar] 118. Struck D.K., Siuta P.R., Lane M.D., Lennarz W.J. Effect of tunicamycin around the secretion of serum proteins by primary cultures of rat and chick hepatocytes. J. Biol. Chem. 1978;253:5332C5337. [PubMed] [Google Scholar] 119. Elbein A.D. Inhibitors of the addition, modification or processing of the oligosaccharide chains of the N-linked glycoproteins. In: Ginsburg V., Robbins P.W., editors. Vol. 3. JA1 Press; London: 1991. pp. 117C119. (Biology of Carbohydrates). [Google Scholar] 120. Miller A.L., Kress B.C., Lewis Rabbit polyclonal to ANAPC2 L., Stern R., Kinnon C. Effect of tunicamycin and cycloheximide around the secretion of acid hydrolases from I-cell cultured fibroblasts. Biochem. J. 1980;186:971C975. [PMC free article] [PubMed] [Google Scholar] 121. XMD8-92 Hickman S., Kulczyki A., Jr., Lynch R.G., Kornfeld S. Studies of the mechanism of tunicamycin inhibition of IgA and IgE secretion by plasma cells. J. Biol. Chem. 1977;252:4402C4408. [PubMed] [Google Scholar] 122. Sidman C. Differing requirement for glycosylation in the secretion of related glycoproteins is determined neither by the producing cell nor by the relative number of oligosaccharide models. J. Biol. Chem. 1981;256:9374C9376. [PubMed] [Google Scholar] 123. Prives J.M., Olden K. Carbohydrate requirement for expression and stability of acetylcholine receptor on the surface of embryonic muscle cells in culture. Proc. Natl. Acad. Sci. USA. 1980;77:5263C5267. [PMC free article] [PubMed] [Google Scholar] 124. Slieker C.J., Lane M.D. Post-transtional processing of the epidermal growth factor receptor. J. Biol. Chem. 1985;260:687C690. [PubMed] [Google Scholar] 125. Chattergee S., Kwiterovich P.O., Jr., Sekerke C.S. Effects of tunicamycin around the binding and degradation of low density lipoproteins and glycoprotein synthesis in cultured human fibroblasts. J. Biol. Chem. 1979;254:3704C3707. [PubMed] [Google Scholar] 126. Baribault T., Neet K. Effects of tunicamycin on NGF binding and neurite outgrowth in PC12 cells. J. Neurosci. Res. 1985;14:49C60. [PubMed] [Google Scholar] 127. Ronnett G.V., Lane M.D. Post-translational glycosylation induced activation.